FLEXIBLE CONTROL STRATEGIESMulti-Loop Process Controller53MC5000FLEXIBLE CONTROL STRATEGY GUIDEPN24568A Rev. 1
Figure 2-1. One-Loop FCS ModulesSection 2. FCS Modules3-1TXT2–3
A.1.2 CS2 - ANALOG BACKUP CONTROLLERThe analog backup controller is used in operations where a remote computer normally controls thefinal element dir
Figure A-2. CS2 Block DiagramAppendix A. Control Strategy Wirelists412-TXTA-11
Table A-2. CS2 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIAS W/L DEFLT VALUE NAMEB100 000 (C) 102 ANO0 OZ
Table A-2. CS2 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0AEN
Table A-2. CS2 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1C3
Table A-2. CS2 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 (L) 108 AB140 255 (C) 078 BB141
Table A-2. CS2 WirelistB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VALUE
Table A-2. CS2 WirelistB170 093 (L) 107 AB171 093 (L) 108 BB172 000 005 FCAppendix A. Control Strategy WirelistsCS2WKS1A-17
A.1.3 CS3 - RATIO CONTROLLERThe ratio PID controller is used where a controlled variable must automatically be maintained indefinite proportion to an
Figure A-3. CS3 Block DiagramAppendix A. Control Strategy Wirelists413-TXTA-19
Figure 2-2. Two-Loop Extended FCS ModulesFCS 53MC5000 Flexible Control Strategies2–43-1TXT
Table A-3. CS3 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIAS W/L DEFLT VALUE NAMEB100 000 (C) 102 ANO0 O
Table A-3. CS3 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0AE
Table A-3. CS3 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1C
Table A-3. CS3 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 AB140 255 (C) 031 BB141 255 (L
Table A-3. CS3 WirelistB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VALU
Table A-3. CS3 WirelistB170 093 (L) 108 AB171 093 (L) 107 BB172 000 130 FCAppendix A. Control Strategy WirelistsCS3WKS1A–25
A.1.4 CS4 - AUTOMATIC/MANUAL STATIONThe automatic/manual station configures the controller into a conventional single station automat-ic/manual selec
Figure A-4. CS4 Block DiagramAppendix A. Control Strategy Wirelists414-TXTA–27
Table A-4. CS4 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIAS W/L DEFLT VALUE NAMEB100 000 (C) 102 ANO0 OZ
Table A-4. CS4 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0AE
Figure 2-3. Four-Loop Extended FCS ModulesSection 2. FCS Modules3-1TXT2–5
Table A-4. CS4 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1C
Table A-4. CS4 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 AB140 255 BB141 255 CPARAMETER
Table A-4. CS4 WirelistB152 100 (C) 022 PV0B153 101 (C) 020 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DE
Table A-4. CS4 WirelistB170 093 AB171 093 BB172 000 FCAppendix A. Control Strategy WirelistsCS4WKS1A–33
A.1.5 CS5 - RATIO AUTOMATIC/MANUAL STATIONThe ratio automatic/manual station configures the controller into a ratio automatic/manual selectorwith man
Figure A-5. CS5 Block DiagramAppendix A. Control Strategy Wirelists415-TXTA–35
Table A-5. CS5 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIAS W/L DEFLT VALUE NAMEB100 000 (C) 102 ANO0 O
Table A-5. CS5 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0AE
Table A-5. CS5 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1C
Table A-5. CS5 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 (L) 001 AB140 255 (C) 021 BB14
2.4 ASSIGNING WORKSHEET VALUESFor single loop controllers the flexible control strategy wirelist datapoint range is from B100 toB172. Two loop and f
Table A-5. CS5 WirelistB152 100 (C) 022 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VALU
Table A-5. CS5 WirelistB170 093 AB171 093 BB172 000 FCAppendix A. Control Strategy WirelistsCS5WKS1A–41
A.1.6 CS20 - TWO-LOOP CONTROLLERThe two-loop controller provides two standard PID controllers in a single cabinet enclosure.Loading CS20 initializes
Figure A-6. CS20 Block DiagramAppendix A. Control Strategy Wirelists416-TXTA–43
Table A-6. CS20 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 031 ANO0 O
Table A-6. CS20 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0A
Table A-6. CS20 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 (C) 020 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 (C) 02
Table A-6. CS20 WirelistB136 070 AB137 070 BB138 255 (L) 136 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 AB140 255 (C) 030 BB1
Table A-6. CS20 WirelistB152 100 (C) 029 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VAL
Table A-6. CS20 WirelistB170 093 (L) 110 AB171 093 (L) 111 BB172 000 001 FCEXTENDED MATH BTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB173 255 (C) 021 A K
2.5 EXECUTING AN FCS WIRELISTThe procedure to execute the FCS wirelist is provided in the table that follows:Executing an FCS WirelistSTEP PROCEDURE1
Table A-6. CS20 WirelistSETPOINT GENERATOR 1TWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB187 164 (C) 033 STV1 SWR1L1370B188 140 (L) 131 SWSPT1B189 156 (C
Table A-6. CS20 WirelistMATH FTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB205 091 (C) 102 AB206 092 (C) 138 BB207 093 C K1C0910K2C0920K3C0930B208 000 FC
A.1.7 CS21 - TWO-LOOP CASCADE CONTROLLERThe two-loop cascade controller consists of two standard PID control loops, arranged in a cascadesetup whereb
Figure A-7. CS21 Block DiagramAppendix A. Control Strategy Wirelists417-TXTA–53
Table A-7. CS21 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 138 ANO0 O
Table A-7. CS21 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0A
Table A-7. CS21 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1
Table A-7. CS21 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 AB140 255 BB141 255 CPARAMETE
Table A-7. CS21 WirelistB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VAL
Table A-7. CS21 WirelistB170 093 (L) 110 AB171 093 (L) 111 BB172 000 001 FCEXTENDED MATH BTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB173 255 A K12C3770K
2.7.1 STATUS DISPLAY 1 LOADERThe Status Display 1 (SDT1) Loader module allows operator push button inputs to be acted uponby the FCS function block b
Table A-7. CS21 WirelistSETPOINT GENERATOR 1TWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB187 164 STV1 SWR1L1370B188 140 SWSPT1B189 156 (C) 102 RSP1 IR1C1
Table A-7. CS21 WirelistB205 091 AB206 092 BB207 093 C K1C0910K2C0920K3C0930B208 000 FCLOGIC FTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB209 086 (L) 134
A.1.8 CS22 - TWO-LOOP OVERRIDE CONTROLLERThe two-loop override controller has two standard PID control loops. Override control is usedwhen two inter
Figure A-8. CS22 Block DiagramAppendix A. Control Strategy Wirelists418-TXTA–63
Table A-8. CS22 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 035 ANO0 O
Table A-8. CS22 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0A
Table A-8. CS22 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1
Table A-8. CS22 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 (L) 088 AB140 255 (C) 078 BB1
Table A-8. CS22 WirelistB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VAL
Table A-8. CS22 WirelistB170 093 (L) 110 AB171 093 (L) 111 BB172 000 001 FCEXTENDED MATH BTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB173 255 A K12C3770K
2.7.2 CONTACT CLOSURE INPUT LOADERThe Contact Closure Input (CCI0-17) Loader module generates a logic level (0/1) L-value outputfor each connected CC
Table A-6. CS20 WirelistSETPOINT GENERATOR 1TWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB187 164 (C) 033 STV1 SWR1L1370B188 140 (L) 131 SWSPT1B189 156 (C
Table A-6. CS20 WirelistMATH FTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB205 091 (C) 102 AB206 092 (C) 138 BB207 093 C K1C0910K2C0920K3C0930B208 000 FC
A.1.9 CS40 - DUAL TWO-LOOP CASCADE CONTROLLERThe dual two-loop cascade controller consists of four standard PID control loops, arranged as twocascade
Figure A-9. CS40 Block DiagramAppendix A. Control Strategy Wirelists419-TXTA–73
Table A-9. CS40 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 174 ANO0 O
Table A-9. CS40 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0A
Table A-9. CS40 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K1
Table A-9. CS40 WirelistPARAMETER LOADER BONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W
Table A-9. CS40 WirelistDEVIATION/ALARM CALC 0ONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2
Table A-9. CS40 WirelistLOGIC CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB170 093 AB171 093 BB172 000 FCEXTENDED MATH BTWO LOOPCOMMENTS:W/L DEFLT VALUE
2.7.3 ANALOG INPUT LOADERThe Analog Input (ANI0-8) Loader module maps the ANI outputs into the FCS program. The out-put signal is the numeric value
Table A-9. CS40 WirelistSETPOINT GENERATOR 1TWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB187 164 (C) 021 STV1 SWR1L1370B188 140 (L) 090 SWSPT1B189 156 RS
Table A-9. CS40 WirelistMATH FTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB205 091 AB206 092 BB207 093 C K1C0910K2C0920K3C0930B208 000 FCLOGIC FTWO LOO
Table A-9. CS40 WirelistLOGIC GFOUR LOOPCOMMENTS:W/L DEFLT VALUE NAMEB223 085 (L) 158 AB224 085 (L) 159 BB225 000 001 FCSETPOINT GENERATOR 3FOUR
A.1.10 CS41 - FOUR-LOOP CONTROLLERThe four-loop controller provides four independent PID controllers. Loading CS41 initializes theANI1–7 engineering
Figure A-10. CS41 Block DiagramFCS 53MC5000 Flexible Control StrategiesA–844110-TXT
Table A-10. CS41 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 102 ANO0
Table A-10. CS41 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L3520SAA0
Table A-10. CS41 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 BB121 253 C K
Table A-10. CS41 WirelistPARAMETER LOADER BONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:
Table A-10. CS41 WirelistDEVIATION/ALARM CALC 0ONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB152 100 (C) 020 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL
2.7.4 EXTENDED MATH AThe Extended Math A (Emath A) module executes a selected function on three input variables A,B, and C. The function to be execut
Table A-10. CS41 WirelistLOGIC CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB170 093 (L) 110 AB171 093 (L) 111 BB172 000 001 FCEXTENDED MATH BTWO LOOPCOM
Table A-10. CS41 WirelistSETPOINT GENERATOR 1TWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB187 164 STV1 SWR1L1370B188 140 (L) 005 SWSPT1B189 156 (C) 023 R
Table A-10. CS41 WirelistMATH FTWO LOOPCOMMENTS:W/L DEFLT VALUE NAMEB205 091 AB206 092 BB207 093 C K1C0910K2C0920K3C0930B208 000 FCLOGIC FTWO LO
Table A-10. CS41 WirelistLOGIC GFOUR LOOPCOMMENTS:W/L DEFLT VALUE NAMEB223 085 (L) 158 AB224 085 (L) 159 BB225 000 001 FCSETPOINT GENERATOR 3FOUR
This page intentionally left blank.Appendix A. Control Strategy WirelistsCS41WKS2A–94
APPENDIX B: MASTER WORKSHEETSThis appendix contains blank master worksheets for photocopying. Entries are not made on themaster worksheets. FCS wir
ApplicableLoop Number 1, 2, 4DatapointRangeFCS Module2 B197 - B200 Auto/Manual Switch 12 B201 - B204 Math E2 B205 - B208 Math F2 B209 - B211 Logic F4
FCS WORKSHEET PAGE ___ OF ___ TITLE:
FCS WORKSHEET PAGE ___ OF ___ CCI LOAD INPUTONE, TWO, AND FOUR LOOPSCOMMENTS:W/L DEFLT VALUE NAM
FCS WORKSHEET PAGE ___ OF ___ SDT1 LOAD INPUTONE, TWO, AND FOUR LOOPSCOMMENTS:W/L DEFLT VALUE NAM
2.7.4.1 PIECEWISE CHARACTERIZER/FUNCTION GENERATOR (FC=15)This FC permits linearization of input signal A or the generation of a function based on th
FCS WORKSHEET PAGE ___ OF ___ANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT x SC
FCS WORKSHEET PAGE ___ OF ___SDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS:W/L DEFLT VALUE NA
FCS WORKSHEET PAGE ___ OF ___ EXTENDED MATH AONE LOOPCOMMENTS: Output datapoints for this modul
FCS WORKSHEET PAGE ___ OF ___ B136 070 L AB137 070 L BB138 255 L CPARAMETER LOADER CONE LOOPCOM
FCS WORKSHEET PAGE ___ OF ___ B152 100 C PV0B153 101 C SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040
FCS WORKSHEET PAGE ___ OF ___ B170 093 L AB171 093 L BB172 000 FCEXTENDED MATH BTWO LOOPCOMMENT
FCS WORKSHEET PAGE ___ OF ___SETPOINT GENERATOR 1TWO LOOPCOMMENTS: Output datapoints for this
FCS WORKSHEET PAGE ___ OF ___B205 091 C AB206 092 C BB207 093 C C K1C0910K2C0920K3C0930B208 000 F
FCS WORKSHEET PAGE ___ OF ___B223 085 L AB224 085 L BB225 000 FCSETPOINT GENERATOR 3FOUR LOOPC
FCS WORKSHEET PAGE ___ OF ___MISCELLANEOUS DATAPOINTSDatapoint ValueEnteredTitle/CommentsAppend
MicroMod Automation, Inc. The Company MicroMod Automation is dedicated to improving customer efficiency by providing the most ost-effective, applica
2.7.4.3 COMPENSATED GAS FLOW (FC = 18 OR FC = 19)Pressure and temperature compensated gas flow equations for both linear and square root flow ele-men
FCS WORKSHEET PAGE ___ OF ___MISCELLANEOUS DATAPOINTSDatapoint ValueEnteredTitle/CommentsFCS 53
The Company’s policy is one of continuous product improvement and the rightis reserved to modify the information contained herein without notice, or
2.7.5 MATH AThe Math A module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math A is selected
2.7.6 LOGIC AThe Logic A module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
Logic FunctionsFC OUTPUT FC OUTPUT0A4A OR NOT B1 A OR B 5 A AND NOT B2 A AND B 6 J-K LATCH3 A XOR B 7 D LATCHInvert output if FC = FC + 128Expanded Lo
2.7.8 PARAMETER LOADER AThe Parameter Loader A (PLoad A) module passes a logic value (0/1) from the input B to the out-put C whenever the A input val
2.7.10 PARAMETER LOADER CThe Parameter Loader C (PLoad C) module passes a numeric value from the input B to the outputC whenever the A input value is
2.7.12 PARAMETER LOADER EThe Parameter Loader E (PLoad E) module passes a numeric value from the input B to the outputC whenever the A input value is
2.7.13 SETPOINT GENERATOR 0The Setpoint Generator 0 (SPG 0) module provides a continuous output signal that is derived fromone of three sources which
2.7.14 DEVIATION/ALARM CALCULATION 0The Deviation/Alarm Calculation 0 (D/C 0) module calculates and loads a Deviation Value (DV),based upon the Setpo
2.7.15 PROPORTIONAL INTEGRAL DERIVATIVE 0The Proportional Integral Derivative 0 (PID 0) module (which is part of the CON module) performsan interacti
Table of Contents1.0 INTRODUCTION 1-11.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . .
CO0...control outputCTC0...control track commandDV0...deviationFF0...feed forwardIR0...controller spanMR0...manual resetOH0...output high limitOL0...o
2.7.16 AUTO/MANUAL SWITCH 0The Auto/Manual Switch 0 (AMS 0) module provides a continuous output signal that is derivedfrom one of three sources which
2.7.17 MATH BThe Math B module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math B is selected
2.7.18 MATH CThe Math C module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math C is selected
2.7.19 LOGIC CThe Logic C module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
Expanded Logic FunctionsINPUTS OUTPUT INPUTS INVERTED OUTPUTFC A B A FC A B A0 0 1 0 128 0 1 10 1 1 1 128 1 1 00 0 0 0 128 0 0 10 1 0 1 128 1 0 0FC A
2.7.20 EXTENDED MATH BThe Extended Math B (Emath B) module executes a selected function on three input variables A,B, and C. The function to be execu
2.7.20.1 PIECEWISE CHARACTERIZER/FUNCTION GENERATOR (FC=15)This FC permits linearization of input signal A or the generation of a function based on t
2.7.20.3 COMPENSATED GAS FLOW (FC = 18 OR FC = 19)Pressure and temperature compensated gas flow equations for both linear and square root flow ele-me
2.7.21 MATH DThe Math D module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math D is selected
2.7.32 CONTROL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-452.7.33 AUTO/MA
2.7.22 LOGIC DThe Logic D module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
Logic FunctionsFC OUTPUT FC OUTPUT0A4A OR NOT B1 A OR B 5 A AND NOT B2 A AND B 6 J-K LATCH3 A XOR B 7 D LATCHInvert output if FC = FC + 128Expanded Lo
2.7.24 SETPOINT GENERATOR 1The Setpoint Generator 1 (SPG 1) module provides a continuous output signal that is derived fromone of three sources which
2.7.25 DEVIATION/ALARM CALCULATION 1The Deviation/Alarm Calculation 1 (D/C 1) module calculates and loads a Deviation Value (DV),based upon the Setpo
2.7.26 PROPORTIONAL INTEGRAL DERIVATIVE 1The Proportional Integral Derivative 1 (PID 1) module (which is part of the CON module) performsan interacti
CO1...control outputCTC1...control track commandDV1...deviationFF1...feed forwardIR1...controller spanMR1...manual resetOH1...output high limitOL1...o
2.7.27 AUTO/MANUAL SWITCH 1The Auto/Manual Switch 1 (AMS 1) module provides a continuous output signal that is derivedfrom one of three sources which
2.7.28 MATH EThe Math E module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math E is selected
2.7.29 MATH FThe Math F module executes a selected function on three input variables A, B, and C. The func-tion to be executed by Math F is selected
2.7.30 LOGIC FThe Logic F module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
List of TablesTable 3-1. Logical Oneshot Wirelist . . . . . . . . . . . . . . . . . . . . . . . . .
Expanded Logic FunctionsINPUTS OUTPUT INPUTS INVERTED OUTPUTFC A B A FC A B A0 0 1 0 128 0 1 10 1 1 1 128 1 1 00 0 0 0 128 0 0 10 1 0 1 128 1 0 0FC A
2.7.31 SETPOINT GENERATOR 2The Setpoint Generator 2 (SPG 2) module provides a continuous output signal that is derived fromone of three sources which
2.7.32 CONTROL 2The Control 2 (CON 2) module combines the operations of Deviation/Alarm Calculation (D/C) andProportional Integral Derivative (PID) m
ADB2...alarm dead bandAIX2...control alarm modeCO2...control outputCTC2...control track commandCZ2...control zoneDV2...deviationFF2...feed forwardIR2.
2.7.33 AUTO/MANUAL SWITCH 2The Auto/Manual Switch 2 (AMS 2) module provides a continuous output signal that is derivedfrom one of three sources which
2.7.34 LOGIC GThe Logic G module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
Expanded Logic FunctionsINPUTS OUTPUT INPUTS INVERTED OUTPUTFC A B A FC A B A0 0 1 0 128 0 1 10 1 1 1 128 1 1 00 0 0 0 128 0 0 10 1 0 1 128 1 0 0FC A
2.7.35 SETPOINT GENERATOR 3The Setpoint Generator 3 (SPG 3) module provides a continuous output signal that is derived fromone of three sources which
2.7.36 CONTROL 3The Control 3 (CON 3) module combines the operations of Deviation/Alarm Calculation (D/C) andProportional Integral Derivative (PID) m
ADB3...alarm dead bandAIX3...control alarm modeCO3...control outputCTC3...control track commandCZ3...control zoneDV3...deviationFF3...feed forwardIR3.
READ FIRSTWARNINGINSTRUCTION MANUALSDo not install, maintain, or operate this equipment without reading, understanding andfollowing the proper MicroMo
2.7.37 AUTO/MANUAL SWITCH 3The Auto/Manual Switch 3 (AMS 3) module provides a continuous output signal that is derivedfrom one of three sources which
2.7.38 LOGIC HThe Logic H module executes a selected function on two input variables A and B to produce an out-put. Input variables A and B, as well
Expanded Logic FunctionsINPUTS OUTPUT INPUTS INVERTED OUTPUTFC A B A FC A B A0 0 1 0 128 0 1 10 1 1 1 128 1 1 00 0 0 0 128 0 0 10 1 0 1 128 1 0 0FC A
2.7.39 ANALOG OUTPUT LOADERThe Analog Output (ANO0-4) Loader module has parameters which allow an FCS signal to bescaled to the proper units before i
2.7.40 CONTACT CLOSURE OUTPUT LOADERThe Contact Closure Output (CCO0-5) Loader module responds to the logic level L-value (0/1) in-puts for each CCO0
2.7.41 STATUS DISPLAY 0 LOADERThe Status Display 0 (SDT0A-0H) Loader module allows FCS logic signals to be tied to SDT0 sothat configured messages ca
3.0 FCS WIRELIST EXAMPLES3.1 OVERVIEWThis section provides four Flexible Control Strategy wirelist examples. Each example has a brieffunctional des
3.2 EXAMPLE 1 - LOGICAL ONESHOTA logical oneshot can be used to toggle a Contact Closure Output (CCO) or reset a totalizer. Asshown in Figure 3-1, a
The wirelist is provided in Table 3-1, which is an example worksheet of this control strategy.Wirelist datapoint values and associated module paramete
Table 3-1. Logical Oneshot WirelistFCS WORKSHEET Oneshot PAGE 2 OF 2EXTENDED MATH AONE LOOPCOMMENTS
1.0 INTRODUCTION1.1 OVERVIEWThe 53MC5000 Process Control Station (PCS) can be easily adapted to serve in a variety of con-trol applications common t
3.3 EXAMPLE 2 - LOGIC OPERATED SWITCHSignal switching is built into the Setpoint Generator and Auto/Manual Selector modules, and condi-tional signal
Table 3-2. Logic Operated Switch - CCI0 = 1Step Module Input(s) Output(s) Comments5 DatapointC005C005 = B144 (ANI1)6ANO’s B100 = C005 (ANI1). ANO0 =
The wirelist is provided in Table 3-4, which is an example worksheet of this control strategy.Wirelist datapoint values and associated module paramete
Table 3-4. Logic Operated Switch WirelistFCS WORKSHEET Switch PAGE 2 OF 4ANO LOAD OUTPUTONE, TWO,
Table 3-4. Logic Operated Switch WirelistFCS WORKSHEET Switch PAGE 3 OF 4EXTENDED MATH AONE LOOP
Table 3-4. Logic Operated Switch WirelistFCS WORKSHEET Switch PAGE 4 OF 4PARAMETER LOADER BONE
3.4 EXAMPLE 3 - HIGH/LOW SELECTOR WITH RE-TRANSMISSIONUnder normal operation, the Setpoint Generator module is used to select an operating setpointfr
If ANI0 is greater than or equal to ANI1, the following event sequence occurs as described in Table3-5:Table 3-5. High/Low Selector - ANI0 ≥ ANI1Step
If ANI0 is less than ANI1, the following event sequence occurs as described in Table 3-6:Table 3-6. High/Low Selector - ANI0 < ANI1Step Module Inp
The wirelist is provided in Table 3-7, which is an example worksheet of this control strategy.Wirelist datapoint values and associated module paramete
2.0 FCS MODULES2.1 OVERVIEWThe Flexible Control Strategy (FCS) modules are the building blocks of the controller functionality.The modules are prese
Table 3-7. High/Low Selector WirelistFCS WORKSHEET Selector PAGE 2 OF 5ANO LOAD OUTPUTONE, TWO, AND
Table 3-7. High/Low Selector WirelistFCS WORKSHEET Selector PAGE 3 OF 5EXTENDED MATH AONE LOOPCOMME
Table 3-7. High/Low Selector WirelistFCS WORKSHEET Selector PAGE 4 OF 5PARAMETER LOADER BONE LOOPC
Table 3-7. High/Low Selector WirelistFCS WORKSHEET Selector PAGE 5 OF 5DEVIATION/ALARM CALC 0ONE L
3.5 EXAMPLE 4 - MASTER RATIO CONTROLLERAs shown in Figure 3-4 below, this control strategy accepts two inputs: the Controlled Variable(CV) at ANI0 a
The wirelist is provided in Table 3-8, which is an example worksheet of this control strategy.Wirelist datapoint values and associated module paramete
Table 3-8. Master Ratio Controller WirelistFCS WORKSHEET Ratio Controller PAGE 2 OF 6ANO LOAD OUTPUTONE, TWO, AND
Table 3-8. Master Ratio Controller WirelistFCS WORKSHEET Ratio Controller PAGE 3 OF 6EXTENDED MATH AONE LOOPCOM
Table 3-8. Master Ratio Controller WirelistPARAMETER LOADER BONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB136 070 L AB137 070 L BB138 255 L CPARAMETER LO
Table 3-8. Master Ratio Controller WirelistDEVIATION/ALARM CALC 0ONE LOOPCOMMENTS: Output datapoints for this module are C119, C121, L110, L111.W/
module can not be connected to the numeric input of another (black output circles connect only toblack input diamonds and open output circles connect
Table 3-8. Master Ratio Controller WirelistFCS WORKSHEET Ratio Controller PAGE 6 OF 6MISCELLANEOUS DATAPOINTSData
APPENDIX A: CONTROL STRATEGY WIRELISTSA.1 STANDARD CONTROL STRATEGIESThe wirelists for the ten control strategies of the 53
A.1.1 CS1 - SINGLE-LOOP PID CONTROLLER The PID controller is designed to fulfill the requirements of a majority of process applications. It isused i
Figure A-1. CS1 Block DiagramAppendix A. Control Strategy Wirelists411-TXTA-3
Table A-1. CS1 WirelistANO LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: ANO = (INPUT) x (SCALER) + BIASW/L DEFLT VALUE NAMEB100 000 (C) 031 ANO0 OZB
Table A-1. CS1 WirelistSDT0 LOAD OUTPUTONE, TWO, AND FOUR LOOPSCOMMENTS: W/L DEFLT VALUE NAMEB111 097 (L) 000 SDT-0A STA0 NAME1A055ALARMASMA0MODE0L352
Table A-1. CS1 WirelistEXTENDED MATH AONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB119 255 (C) 020 A K12C3650K11C3640K10C3630K9C3620K8C3610B120 254 (C) 022
Table A-1. CS1 WirelistB136 070 AB137 070 BB138 255 CPARAMETER LOADER CONE LOOPCOMMENTS:W/L DEFLT VALUE NAMEB139 070 AB140 255 (C) 030 BB141 255 (C)
Table A-1. CS1 WirelistB152 100 (C) 029 PV0B153 101 SP0T1-0C1170CZ0C1140PL1-0C103100PL2-0C1040ADB0C1052AIX0B3351PID 0ONE LOOPCOMMENTS:W/L DEFLT VALUE
Table A-1. CS1 WirelistB170 093 (L) 110 AB171 093 (L) 111 BB172 000 FCAppendix A. Control Strategy WirelistsCS1WKS1A-9
Kommentare zu diesen Handbüchern